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Given any meromorphic function j; let E be a compact subset of C not con
taining any poles of f It is shown that sequences of rational functions obtained
by deleting certain poles of diagonal sequences of Pade approximants offconverge
uniformly to f on E. Also discussed are existence and continuity properties of
this pole deletion approximation procedure.

I. INTRODUCTION

Pade approximants have been widely used in numerical analysis, physics
and engineering. However, there is a variety of unanswered questions con
cerning the convergence of sequences ofPade approximatnts. For example, it
is not known, for a meromorphic function f, if some subsequence of a
diagonal sequence of Pade approximants converges uniformly to f We
contribute to the study of Pade approximants by showing for any mero
morphic function f that sequences of rational functions closely related to
diagonal sequences of Pade approximants converge uniformly to f on
compact sets containing no poles off We also discuss continuity properties
and existence properties of our rational functions.

To describe our rational functions we will use the Frobenius definition of
Pade approximants. Given a formal power series I(z) = L~~o diz i the (n/m)
Pade approximant is defined as the unique rational function for which

where

Pllln(Z)
PI/m(Z)
q,,,u(z)

PIII"(Z) = q",n(z)/(z) -~- O(ZIll I n l) (z ---+ 0) ( I )

and where PIII"(Z) and q",n(z) are polynomials, respectively, of degrees 11

and m. For later convenience given PIII,,(z) we define P~I1l(z) and q""I/(z)
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to be the unique polynomials with no common factors such that q~n(O) = I
and

This q:m(z) will be called the minimal denominator for Pmiz). It is known [4]
that for any m ?c 0 and n ?c 0 and any j(z) with a power series expansion that
P",n(z), P-;;'n(z) and q~n(z) exist and are unique. To define our approximant
assume that

P () P;'n(z)
1/In Z = q~,,(z)

is known and it has a partial fraction decomposition

where ~;, i = 1,2,... , M are the zeroes each of multiplicity k; of q;n(z),
r~n(z) is a polynomial and r~,n(z), i = 1,2'00" M, are polynomials, respect
ively, of degree less than k; . Let Sm.n be any set in e. Then our (n/m) rational
approximant is defined to be

r~,n(z) + I
1;, i rt' S m,n

r~n(z)

(z - LYi (2)

We note that since Pade approximants as defined by Frobenius always exist
then it follows easily that for any j(z) with a power series expansion, any
m ~ 0, any n ~ 0 and any set Sm,n our (n/m) approximant is well defined.

Later we will discuss literature relevant to our approach. However, here
we note that Walsh in [6] discuss a pole elimination scheme similar to (2).
His results, however, are directed towards rational functions other than Pade
approximants and apply only to rational functions of fixed denominator or
fixed numerator degree.

2. CONTINUITY AND CONVERGENCE

In this section we study the continuity of our approximants as a function
of co-efficients in the power series expansion of a given function and study
the pointwise convergence of our approximants to a meromorphic function!

To do this we first present a useful lemna.

LEMMA l. Let L ?c 0 and points ~i , i = 1,2, ... , L, in e be given. Let .1
and R be chosen so that R ?c I, .1 ~ I and circles of radius 3.1 about each ~;
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are contained in the circle i z R. Thenfor any lIZ' 0 and any rea/Ilumbers
bi , i = 0, 1,2" .. , m there exists a curve C m (depending on the b/s and m)
consisting of L circles Ci,'II, centered, respectively, at 'i , iI, 2, ... , L, and of
radius between Ll and 3Ll and a circle CO•III lI'ith center at z 0 and radius
between R - 2Ll and R such that

,Iii b.i I .' 24 R' III
L..;~'O ;z __ ( e )max ---'~.- s. --- .

zECm l 2:r;~o bjz} I • . Ll .

Proof The proof is not difficult using Cartan's lemma [3] and some of the
techniques used in [1, 5, 7. 8, 9].

Since 24eRjLl > 1 we can assume without loss of generality that bill ~ 0
and therefore that bill = I. We let p(z) = 2:;':0 b;zj = n;':l (z - z) and
assume

Consider

z; ~ 2R,j~' 1,2,... , t, and

Zj > 2R forj = t I, ... , m.

(3)
(4)

I
,m b·z j :
L..j=O J I

(5)

(6)

where Q"'.k indicates any set of m - k distinct elements of {I, 2, ... , m} and
the sum is over all Qm-k (m and k fixed). Since for any k there are G') such
Qm-k, since R > 1 and by (3), (4) and (5) it follows for I z I < R that

I bkz
k

I <. (m) R"'(2R)m-I, m I-z-;-I
i L;~o b;z;: "" k I n~~l (z - z;)1 ;Lt z - Z; .

Since I z I ~ R and I Zj I :?: 2R,j = t + I, ... , m and by (6) it follows that

2:j~o i bjz; i <. (3R)'" 2m-{ <. (6R)m
i 2:J=o biz; I "" I n~~l (z - z;)1 ~~ I n~~l (z - z;)1

We now apply Cartan's Lemma [3] to conclude that except inside of t
circles the sum of whose diameters is at most Ll,

In(z - zJ I :?: (te)t :?: (te)""
Since the sum of the diameters of these circles is less than Ll it follows that it
is always possible to choose the curve Cm of the lemma so that for Z E Cm

,Tn Ibzj
I (6R)m ( 24eR )'"L..,~O , . <. <. _

12:;:0 biz! I "" (~-f' "" Ll .
4e.

I
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(8)

We now consider the continuity of our approximants as a function of the
coefficients in a power series expansion:

THEOREM 1. Let fiz) = L:~~o d"izi, i = 0, I, 2, ... , be a formal power
series, let E be any compact set in e, let m ~ °and n ~ °and let Pmn,,(z) be
the (njm) Pade approximant to f,.,(z). If die; --->- dOi , i ~~ 0, I, ..., m + n, as
k --->- 0Ci then there exists sets 51< in e such that

uniformly on E.

Proof. First we describe the sets 5" of the theorem. Let Pmn,lz) and
qmn"(z) be any polynomials, respectively, of degrees :(: nand :(: m which
satisfy (1) withfreplaced by j;, . Also let P-;:'n"(z) = L:;~o a"izi and q~n"(z) =
L::o bkizi, qmn,lO) = I be the polynomial obtained when common factors
are omitted from Pmn"(z) and qmnk(z). Since E is compact we may choose a
disc I z I :(: R, R ~ I, such that E is interior to this disc and such that
I z I = R contains no zroes of q;;:mo(z), Let ~i' i = 1,2,... , ex(ex :(: m) be the
zeroes of q-;:'no(z) and let ~i , i = 1,2,... , L, be the zeroes of q-;:'no(z) not in E
and such that I ~i I < R. Now we choose L1 so that

L1 :(: I; the discs I z - ~i I :(: 4L1, i = 1,2,... , L, and the annulus
R - 3L1 :(: I z I :(: R are disjoint and do not intersect E; and such that
R :(: I z I :(: R + L1 contains none of ~i , i = 1,2,... , ex. (7)

We now apply Lemma I to construct curves Cm ", k = 0, I, ... , such that

L:T~o I b"jzJ I :< ( 24eR )mmax . '" --A- .

ZECm
k I L:7~o b"jzJ I .::.J'

Note that Cm" consists of circles C~,m, C:,m ,... , C~,m as in the lemma. We
define 51, to be the region interior to C~,m and exterior to ctm , i = 1, 2,... , L.

First, note that by our construction 5" and E contain precisely the same
set of zeroes of q-;:'no(z) so that

(9)

Next we let w" be the highest power of z common to Pmnk(Z) and qmn"(z).
Note by (I) that

k = 0, 1,2,... (10)

and that P-;:'n,lz) and q-;:'n"(z), respectively, are of degrees :(: n - w" and :(:
m - w",
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P () P ( Pr~nk(Z) q,~nO(Z) - Pr~no(Z) qr~nk(Z)
",nk Z - mnO Z) -- * () ( )

q"'"k Z q",nO Z
(I I )

and by (10)

q';;nk(Z) q;;;no(Z)[L:~o (did - dOi) z'] + O(z"" '" 1 iC
k ),O(Z'" , n 'tWO)

q;;'nk(Z) q';;no(Z) (12)

But the numerator of (I I) is a polynomial of degree less than m ~- n - 11'0 

Wk and therefore (12) implies

I P"mk(Z) - P",no(z)

"'''' I b i' "'HI I b i. ("''''Tn I d d I I 'i)<' LA~O 'riZ I L..i~O I OiZ I L..i=O , ki - Oi i Z (13)
~" , L7~0 bkiZi i IL:o bOiZi

I

Note that (13) and its derivation is largely the same as that of (3.9) of [5].
However equation (13) is more general in that we have used the Frobenius
definition of Pade approximant.

The key concept in our proof involves the Cauchy integral formula. In
particular, note that S" is bounded by C",k - a finite number of simple
Jordan curves none of which lie on any poles of Pmn1lz). It follows from
Cauchy's integral formula that for z interior to SI.

_1_: r ~"no(U) da
27TI • c,,," ~ - (J

Also Crr/, lies on no poles of Pmno(z) so

By these equations and (9);
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and by (13) and the definitions of J and C",l.

~ 271'L3J + 271'R, ,
~ 2 J max I Pmn,,(z) - P",no(z)

7T ZECm
k

R ""m 'b i' ""m b i' ""m+n, I d I I i I<: (3L --L _) ., L.;~o I /riZ I I L.;~O OiZ I L.i~O I ( k1 - Oi Z
'-" r A max I"" b . I r"" b .

- . "-J ZECm
A L..7:o klZ'l- I I L..~=o OiZ'l-

125

Finally since the union of C,/, k = 0, I, 2,... , is contained in a compact set
bounded (by distance J) away from zeroes of q~no(z) and interior to or on
I Z I ~ R and applying Lemma I, we obtain for Z in E

where B does not depend on k. Since m, n, R, Land J are also independent
of k, the theorem follows. I

COROLLARY I. In addition to the assumptions of Theorem I assume that E

contains no poles of P",no(z), Then

uniformly on E.

Proof From the definition of e and our assumption on E

We note, as will be illustrated later, that there exist sequences of Pade
approximants Pmn,,(z), k = 0, I, 2, ... , and sets E which satisfy the assump
tions of Theorem I and Corollary I but for which

Although we do not present a proof, we remark that to insure such Pade
approximants Pmn,,(z) approach Pmno(z) on E one needs an additional condi
tion that a determinant involving dOl, i oc= 0, I,... , m+ n, is non-zero.
Corollary I and Theorem I are important because no restrictions on m ); 0,
n ;:;'" °and do; , i = 0, 1, ... , m -+- n are required. Corollary I and Theorem I
later will be illustrated.

We now consider the convergence of our approximants.
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THEOREM 2. Let f(;:) be analytic at;: 0 and meromorphic ill C, let
A 0 and let p,u,.n};:) be any sequence ofPade approximants off(;:) ll'ith

n, Am" . (15)

Let E be a compact set containing no poles off(;:). There exists sets 511I u ill e'
such that v' "

Ts"'v.,,)Pm,.nv(z)] --+ fez)

uniformly on E as mv -+ 00.

Proof The proof will follow from our equation (14) and certain results
contained in [5] and [7]. For completeness as indicated we will repeat some
portions of the proofs in [5] and [7]. For simplicity in our proof we will drop
the subscripts v when referring to Plllv,nv(z), Smv,nv' etc. However. by the
sequence Pm,n(z) or the sets Sm.n , etc" we mean that the pairs m, n form a
sequence m" , nv , v = l, 2,,,., as in the theorem statement.

We first define the sets Sm.n and other parameters which we need later. We
let ", i = l, 2" .. , (Y, be the poles of fez) where (Y ~ 0 and if fez) has an
infinite number of poles, (Y 00. It is assumed that if a pole has order 1
then it is repeated in the sequence " , ; == 1,2, .. " (Y. We also assume '1!
I '2 I :S:; 1'3 I, etc" and we choose R I so that i z I < R contains E and
I z ! = R does not contain any', , i=c 1,2" .. , (Y, Let L be the number on/s
in I z I < R and choose L1 satisfying (7), We select the sets Sm.n exactly as 5/,
are defined in the proof of Theorem I except the polynomials 2:;~0 b',,j;:i in the
definition of Sk should be replaced by minimal denominators of the Pade
approximants Pmn(z), Finally, we choose p large enough so that R2/p :S:; I and

and we let M be the number of 'i satisfying i " I :S:; p,
By the definition of p and M it follows that we can expressf(z) as

fez) = M '('~o Z)
TI I-~
i~l "

(16)

(17)

where 2::0 c,z' is uniformly convergent for i z I :S:; p. We also define for
n~O

(18)
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and for m ~ °we let P",no(z) be the Pade approximant to inez). It follows
easily that for m ~ M, Pmno(z) = inez) and thus for m ~ M that the minimal
denominator of Pmno(z) will be the fixed polynomial q;:;no(z) = TI~=I (I 
Zl'i)' Finally we define di , i = 0,1, ... , and dni , i= 0, I, ... , by

>0

fez) = I diz i ,
i=O

j~(z) = I dnizi.
i=O

Precisely as we derived (14) it follows that for m '? M and z E E

(19)

(20)

Since for m '? M q;:;no(z) is a fixed polynomial, it follows that B will not
depend on m or n.

Now following [5] we note that by the uniform convergence of L~=o eizi

there exists a constant L such that

Also we define

ei ~ Lp-i, i = 0,1,2,... ,

r
M ( - )1-1

ocJ] I - L = to gi
Zi

.

(22)

(23)

Then from (17-20), (22) and (23) it is not difficult to show that for m '? M

(24)

(see 3.4 of [5]). As in [5], by the definition of ~i and by (23) it follows that
each term in L;~~I I z Ii I gi will be dominated by terms in the expansion of
(I - ! z! ~I j)-M. From this fact and by (24) it then follows that for m ?: M

IH'" I Z 1'101 (M + m - 2)M-l m-I I Z [iI j(di - dni) Zi j ~ L - m ------ I -
i=() P (M--l)! i=() ~l
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(see 3.5 of [5]). From this equation and since:: E E implies 
easily that

R it follows

II 'lil

I (ii, -- iIni ) Zl
/=,0

R' "
AI11 M

(-- ) (I
p

(25)

(as in [7]) where A does not depend on 111 and 11.

Now by (16), (21) and (25) it can be concluded that for m M and z icC E

Ts,,,)PII,,,(z)]-- f(z) R) I)"', '~3L -+-:2]-, mMAB l2+- fll(z) - I(z). (26)

Finally, it follows easily from the definitions of f(z) andj~(z) that for Z E E,
! I'l(z) - f(z)1 -> 0 as 11 -> 00. Since 11 Am the theorem follows from (26). I

We remark that although Theorem I, Corollary I and Theorem 2 require
selection of an appropriate set, Sic or SII/".lI

v
this selection appears not to be

difficult. In fact in most practical problems the choice of Sic or S"",.II, equal to
E will suffice. In any case there are only a finite number of poles to a Pade
approximant and in the examples we have considered it was easy to select
which of these to eliminate. If required, the proof of Cartan's Lemma [3] can
be used to constructively select SI. or Sill", ", . We also remark that application
of T s as defined in (2) to a rational function requires a partial fraction
deco~'position of the rational function in addition to construction of the
Pade approximant. Usually this is not a difficult computational problem,

3, EXAMPLES AND DISCUSSION

EXAMPLE I. To see the importance of continuity results such as Theorem
1 and Corollary I consider the functions

2 I 121 + 86z --r 243z2 --, 472z3

/,,(z) =c 2=-z ! T (2 - z)(3 - z)(4 - z)(5 - z) , k

and Po(z) = 2/(2 - z) and the set E == {z : . z . I]. Suppose, for the sup
norm over E and 1ik "sufficiently" small, we wish to approximate /".(z) by a
rational function of denominator degree not greater than 2 and numerator
degree not greater than I. lfwe consider the (1/2) Pade approximant PJz) to
/,..(z) we obtain

which is a poor approximation to /,..(z) in the sup norm because of the pole at
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z = i. As can be seen (see the next paragraph) this difficulty arises from the
fact that Pade approximation does not satisfy Theorem I or Corollary I.

However, let us now consider our (1/2) approximant Riz) as described in
Theorem I to fk(Z). For 11k sufficiently small it follows easily that the first
four power series coefficients offk(Z) will be close to those of Po(z). Therefore,
it follows by Corollary I that for 11k sufficiently small R,,(z) will closely
approximate Po(z) over E. However, it is clear for Ilk sufficiently small that
Po(z) is close to flz) throughout E. Thus it follows that for 11k sufficiently
small Rk(z) will be close to fh.(Z) throughout E. For example, selecting the set
Sk of Theorem I equal to E

2++
Rk(z) = --

2-z

and for k = lOOO (say) we can show that

I R•.(z) - !Jlz) I ::::; .038.

Thus for 11k sufficiently small our approximant to!Jlz) is a good approxima
tion although the (1/2) Pade approximant is a poor approximation to!Jlz). I

EXAMPLE 2. This example illustrates Theorem 2 using a version of
Gammel's [2] example. In particular following Gammel we define

fez) = I~zj = 1 + I (Xv I r!zj
j=O v=l )=11 11

and rv eel" 0 is any sequence in z I ::::; I whose limit points are dense (say) in
I z I ::::; 1. Again we choose E = {z : Iz ! ::::; I} and we let Pnvnv(z) be the
(nvlnv) Pade approximant to fez) and Rn n ~~ TE[Pn n (z)]. Then it is known
[2] that v v v v

converges pointwise to fez) nowhere in E. However it is easily shown that

nl~l n~l

R = '" .I·.z j - (X r-nv+1 '" rnv-1-·.izj
nvflv L J v II L v

j=O )=0
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and then it may be directly verified that R" n-+ f(z) uniformly in E. In fact
noting that 1(z) is entire we can conclude vby applying Theorem 2 that for
appropriate sets S",,, the entire sequence T s [P nr,(z)] will converge to
1(z) uniformly in E. I n,n

Finally we wish to make a few further remarks and briefly outline the
related literature. First we remark that Theorem 2 can be improved to allow
1(z) to have a finite number of essential singularities in compact subsets of e.
In fact for certain subsequences of our approximants such a result follows
rather directly from results appearing in [I]. However, since we wished to
consider any sequences of our approximants satisfying (15) and to achieve
conciseness we have chosen the development of Section 2. As another
extension of our results we note without presenting any details that a pole
elimination scheme such as ours can be usefully applied to other rational
approximation procedures such as Newton-Pade or Cauchy approximation
[II] (see [10]).

In addition to the article of Walsh discussed earlier there are a variety of
other articles related to our results. Relevant to our results on continuity, a
number of papers discuss continuous dependence in rational approximation
procedures. A variety of papers [13]-[15] describe continuity properties for
best Chebyshev rational approximation and [II] and [13] prove continuity
results similar to Theorem I for Newton-Pade approximation. However, all
these papers require some type of "normality" condition-such as requiring
a determinant be non-zero-for their pointwise continuity results. As
mentioned earlier our results do not require normality conditions. Also [16],
[17] and [18] contain results related to our Theorem I. In fact, in [16] Chui,
Shisha, and Smith avoid requiring any normality conditions, but the results
of [16], [17] and [18] are all directed toward the convergence of certain best
rational approximants to Pade approximants and thus, although related, are
different from our results. An interesting possible extension of Theorem I
would be to consider the effect of pole elimination on best Chebyshev
rational approximation.

Relevant to our results on pointwise convergence of Pade approximants
Chisholm [5] and Beardon [7] have presented results but their results require
technical assumptions about the location of poles of the Pade approximants.
These assumptions are known not necessarily to be satisfied for the entire
sequence of (n(n) Pade approximants to a meromorphic 1(2) and it is
unknown, as yet, if they are satisfied for subsequences of (njn) Pade approxi
ments. !n fact, this is Baker's [12, I] unproven conjecture. Some other
relevant results are those of Nuttal [9] and Pommerenke [8]. However these
results concern convergence in measure and capacity, not pointwise con
vergence. Also we note that in [5] Chisholm shows that for meromorphic
f(z), for each pole of P",,,(z) (m, n large) which is not "near" a pole 01'1(.:)
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there will be a "nearby" zero to Pmn(z). Although Chisholm's result is closely
related to our results he does not discuss pole elimination. Baker's book [I]
discusses much of the recent literature.

Finally, we re-emphasize the importance of our pole elimination scheme
it allows construction of rational approximants closely related to Pade
approximants, that have desirable uniform pointwise convergence properties
and desirable continuity properties.

REFERENCES

I. G. A. BAKER, JR., "Essentials of Pade Approximants," Academic Press, New York,
1975.

2. G. A. BAKER, JR., The existence and convergence of subsequences of Pade approximants,
J. Math. Anal. Appl. 43 (1973), 498-528.

3. R. BOAS, JR., "Entire Functions," Academic Press, New York, 1954.
4. W. B. GRAGG, The Pade table and its relation to certain algorithms of numerical

analysis, SIAM Rev. 14 (1972), 1-62.
5. J. S. R. CHISHOLM, Approximation by sequences of Pade approximants in regions of

meromorphy, J. Math. Phys. 7 (1966), 39-44.
6. J. S. WALSH, Surplus free poles of approximating rational functions, Proc. Nat. Acad.

Sci. USA 52 (1964), 896-901.
7. A. F. BEARDON, On the convergence of Pade approximants, J. Math. Phys. 21 (1968),

344-346.
8. CH. POMMERENKE, Pade approximants and convergence in capacity. J. Math. Anal.

Appl. 41 (1973), 775-780.
9. J. NUTTAL, The convergence of Pade approximants of meromorphic functions, J. Math.

Anal. Appl. 31 (1970), 147-153.
10. L. FOSTER, "Applications of Non-Linear Approximation Theory to the Model

Reduction Problem," Ph. D. dissertation, Brown University, Aug. 1977.
11. M. GALLUCI AND W. JONES, Rational approximation corresponding to Newton series

(Newton-Pade approximants), J. Approximation Theory 17 (1976), 366-392.
12. G. A. BAKER et al., An investigation of the applicability of the Pade approximant

Method, J. Math. Anal. Appl. 2 (1961), 405-418.
13. H. MAEHLY AND CH. WITZGALL, Tschebyscheff-Approximationen in Kleinen

Intervallen, II, Numer. Math. 2 (1960), 293-307.
14. H. WERNER, On the rational Tschebyscheff operator, Math. Z. 86 (1964), 317-326.
15. E. W. CHENEY AND H. L. LOEB, On the continuity of rational approximation operators,

Arch. Rational Mech. Anal. 21 (1966), 397-401.
16. C. K. CHUI, O. SHISHA, AND P. W. SMITH, Pade approximants as limits of best rational

approximants, J. Approximation Theory 12 (1974),201-204.
17. J. WALSH, Pade approximants as limits of rational functions of best approximation,

J. Math. Mech. 13 (1964), 305-312.
18. J. WALSH, Pade approximants as limits of rational functions of best approximation,

J. Approximation Theory 11 (1974), 225-230.


